Solving SAT for CNF Formulas with a One-Sided Restriction on Variable Occurrences

نویسندگان

  • Daniel Johannsen
  • Igor Razgon
  • Magnus Wahlström
چکیده

In this paper we consider the class of boolean formulas in Conjunctive Normal Form (CNF) where for each variable all but at most d occurrences are either positive or negative. This class is a generalization of the class of CNF formulas with at most d occurrences (positive and negative) of each variable which was studied in [Wahlström, 2005]. Applying complement search [Purdom, 1984], we show that for every d there exists a constant γd < 2 − 1 2d+1 such that satisfiability of a CNF formula on n variables can be checked in runtime O(γ d ) if all but at most d occurrences of each variable are either positive or negative. We thoroughly analyze the proposed branching strategy and determine the asymptotic growth constant γd more precisely. Finally, we show that the trivial O(2) barrier of satisfiability checking can be broken even for a more general class of formulas, namely formulas where the positive or negative literals of every variable have what we will call a d–covering. To the best of our knowledge, for the considered classes of formulas there are no previous non-trivial upper bounds on the complexity of satisfiability checking.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving MaxSAT and #SAT on Structured CNF Formulas

In this paper we propose a structural parameter of CNF formulas and use it to identify instances of weighted MaxSAT and #SAT that can be solved in polynomial time. Given a CNF formula we say that a set of clauses is precisely satisfiable if there is some complete assignment satisfying these clauses only. Let the ps-value of the formula be the number of precisely satisfiable sets of clauses. App...

متن کامل

The Effect of Structural Branching on the Efficiency of Clause Learning SAT Solving

The techniques for making decisions, i.e., branching, play a central role in complete methods for solving structured instances of propositional satisfiability (SAT). Experimental case studies in specific problem domains have shown that in, some cases, SAT solvers benefit from structure-based limitations on which variables the solver is allowed to branch. Mainly, the focus has been on input (or ...

متن کامل

The Hard Problems Are Almost Everywhere For Random CNF-XOR Formulas

Recent universal-hashing based approaches to sampling and counting crucially depend on the runtime performance of SAT solvers on formulas expressed as the conjunction of both CNF constraints and variable-width XOR constraints (known as CNF-XOR formulas). In this paper, we present the first study of the runtime behavior of SAT solvers equipped with XOR-reasoning techniques on random CNF-XOR form...

متن کامل

Computational complexity of SAT, XSAT and NAE-SAT for linear and mixed Horn CNF formulas

Zusammenfassung Abstract The Boolean conjunctive normal form (CNF) satisfiability problem, called SAT for short, gets as input a CNF formula and has to decide whether this formula admits a satisfying truth assignment. As is well known, the remarkable result by S. Cook in 1971 established SAT as the first and genuine complete problem for the complexity class NP [15]. Thus SAT resides at the hear...

متن کامل

On the Approximability of Splitting-SAT in 2-CNF Horn Formulas

Splitting a variable in a Boolean formula means to replace an arbitrary set of its occurrences by a new variable. In the minimum splitting SAT problem, we ask for a minimum-size set of variables to be split in order to make the formula satisfiable. This problem is known to be APX-hard, even for 2-CNF formulas. We consider the case of 2CNF Horn formulas, i. e., 2-CNF formulas without positive 2-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009